Chemistry – XI

Chapter - 1

SOME BASIC CONCEPTS OF CHEMISTRY

Topics included in this Lecture

Classification of Matter

□ Properties of Matter

Units for Measurement

□ Interconversion of units

Matter

> Anything which has mass and occupies space is called matter.

Each substance in the universe is made of matter.

> The basic constituents of matter are **atoms** and **molecules**.

HE

He

Classification of Matter

Matter can be classified on the basis of its

chemical composition.

On the basis of Physical State, matter can exist in three physical states viz. solid, liquid and gas.

1 Interparticle spaces 2 Intermolecular forces 3 Thermol energy

On the basis of chemical composition, matter can be classified as **pure** substances and mixtures.

- Pure substance is a substance in which all the constituent particles are of the same chemical nature.
- An *element* consists of only one type of particles (atoms or molecules). For example, sodium (Na), copper (Cu), silver (Ag), hydrogen (H_2) , oxygen (O_2) etc.
- A *compound* consists of two or more atoms of different elements combined in a definite ratio by mass. For example, water (H₂O), ammonia (NH₃), carbon dioxide (CO_2) etc.

- A mixture consists of two or more substances mixed in any ratio. A mixture may be either *heterogeneous* that consists of distinct phases or *homogeneous* that consists of single phase.
- In a *homogeneous mixture*, composition is uniform throughout. For example, sugar in water.
- In *heterogeneous mixtures*, the composition is not uniform throughout. For example, sand in water.

Properties of Matter

Every substance has characteristic properties which can be classified

into two categories:

- Physical properties
- Chemical properties

- The property which can be measured without changing the chemical composition of the substance is known as **physical property**. For example, mass, volume, density, refractive index etc.
- The property which can be evaluated at the cost of matter, i.e., require a chemical change to occur is known as chemical property. For example, acidity or basicity, combustibility etc.

Units for Measurement

- > All physical quantities have to be measured.
- Any measurement is represented by a number followed by unit in which it is measured.

S.I. System of Units

> The International System of Units (S.I. system of units) was introduced as a

common standard system for measurement of physical quantities.

> The S.I. system has seven fundamental units and the other units are derived

from these units (**Derived units**).

Fundamental Units

Fundamental units are those units which can neither be derived

from one another nor be further resolved into any other units.

Derived Units

Derived units are the units which are expressed as a function of

more than one fundamental units.

Quantity with formula	Unit		
Speed = Distance (m) time (s)	ms er mjs		
Area = exb = mxm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Volume = Exbxh = mxmxm	m ³		
Density = man (kg) volume (m ³)	kgm ⁻³		

The S.I. system allows the use of prefixes to indicate the **multiples** or **submultiples** of a unit.

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol	
$\int 10^{-12}$	pico 🗸	р	10	deca	da	
10 ⁻⁹	nano	l n	10 ²	hecto	h	
10 ⁻⁶	micro 🖵	μ	10 ³	t kilo	k	
10 ⁻³	milli 🗸	m	~10 ⁶	mega	Μ	
10 ⁻²	centi	с				
10 ⁻¹	deci	d				
$ Pm = 10^{-12} m$, $ nm = 10^{-9} m$, $ Mm = 10^{-9} m$ $ km = 10^{-7} m$						

Practice Question

Que. Convert the following measurements in base fundamental units.

(i) $23.4 \ km = 23.4 \times 10^{3} \ m$ (ii) $98.45 \ pm = 98.45 \times 10^{-12} \ l \ pm = 10^{-12} \ m$ (iii) $0.0098 \ \mu m = 0.0058 \times 10^{-6} \ m$

(iv)845 mmol =
$$845 \times 10^{-3}$$
 mol
(v) 74.23 Å = 72.23×10^{-10} Å $\left[[Å = 10^{-10} m \right]$

 $(vi)400 nm = 4 \sigma \times 10^{-9} m$

Practice Question

Que. Find the relationship between picometer and nanometer.

Ans.
$$|\rho m = 10^{-12} m$$

 $= 10^{-12} \times 10^{9} nm [|m = 10^{9} nm] \text{ or } (1mm = 10^{9} m)$
 $= 10^{-3} nm$
 $\rho n = 10^{-3} nm$
 $\rho m = \frac{1}{100} nm$
 $\Rightarrow 1000 \rho m = 1 nm$

Practice Question

Que. Compare the magnitude of intermolecular forces in three states of matter.

Gas < Liquid < Solid -> Increasing intermolecular forces -> Ans.

ABS-Online Digital Classes

Dr. Sourabh Monga (9897057948, 7983724767)

Chemistry Lecturer @ ABS Institute (For Classes

XI, XII, JEE, NEET and IMU – CET)

Educational Counsellor & Author (Good Luck Publishers, GRB

Publications and Dinesh Publications)